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Efficient Nearly Orthogonal Deletion Designs

by

Subir Ghosh*

University of California
Riverside, CA 92521

and

Joan Mahoney

University of California, Irvine and
Hughes Aircraft Company

0. Summary

This article considers single replicate factorial experiments in

incomplete blocks. A single replicate 2 m l x 3m 2 deletion design in in-

complete blocks is obtained from a single replicate 3m (m = m1 + m 2 ) pre-

liminary design by deleting all runs (or treatment combinations) with the

first m I factors at the level two. A systematic method for determining

the unbiasedly estimable (u.e.) and not unbiasedly estimable (n.u.e)

factorial effects is provided. Although the method is discussed for

single replicate 2
m l x 3m 2 deletion designs in three incomplete blocks,

the method can easily be extended to more than three blocks. It is shown

that for m2 > 0 all factorial effects of the type F .. FFl F+ 1 ...F ,

12m1 m

= 0, 1 for i = 1,...,m1 , ai = 0,1,2 for i = ml+l,...,m, (cz,...,a )

() (a + ,,..-m) * 
( I ' '...,I) where a = 1 and 2, are u.e. and

the remaining factorial effects are n.u.e. It is noted that (21 - i)

*The work of the first author is sponsored by the Air Force Office of

Scientific Research under Grant AFOSR-88-0092.
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factorial effects of 21 factorial experiments and (3 23) factorial

effects of 32 factorial experiments, which are embedded in 21 x 32

factorial experiments, are u.e. The 2 x 3M - deletion designs were con-

sidered in the work of Voss (1986). Defining factorial effects of a

2 x 3 factorial experiment in a form different than in Voss (1986), a

simple representation of u.e. and n.u.e. factorial effects is obtained.
ml+1

In this representation, there are (2 +i) n.u.e. factorial effects S

m I  am +

of the type FI1.Fm1 Fml+1 ...Fm . This number is smaller than the

corresponding number of n.u.e. factorial effects in the representation of

Voss (1986). The relative efficiencies in the estimation of factorial
m I m

1 2
effects of 2 x 3 deletion designs are also given.

KEY WORDS: Confounding, Factorial experiment, Single replicate,

Unbiasedly estimable.

t.
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1. Introduction

-J There is a vast literature on the construction of orthogonal single

replicate factorial designs in incomplete blocks. The reader is referred

to Voss X1986) for the list of references. The concept of deletion

designs was introduced in Kishen and Srivastava-(]4i5I. The deletion

technique in deletion designs was then used by many authors,(see Addleman

(1962, 1972), Margolin (1969), Sardana and Das (1965), Voss (1986)).

m, I

This article considers72 3T deletion designs in three incomplete

blocks and then presents a systematic method for finding the u.e. and

n.u.e.tfactorial effects. The smaller values of m I and m 2 are the most

practically important cases.

For n.u.e. factorial effects, the biased estimators (biased w.r.t

block effects) are called the unadjusted estimators. Under the assump-

tion that certain higher order interactions are negligible, the unbiased

estimation of block effects contrasts and n.u.e. factorial effects,

excluding the general mean, are possible. This makes the deletion design

an orthogonal design. The unbiased estimators of n.u.e, factorial

effects under the assumption are called the adjusted estimators.

The relative efficiency in the estimation of a factorial effect is

the ratio of the variance of the unadjusted estimator divided by the *1

variance of the adjusted estimator. Observe that for u.e. factorial

effects there is no need for adjustment and hence the relative efficiency

is unity. For n.u.e. factorial effects the relative efficiency is less

than unity. The closer the value of the relative efficiency to unity

implies the lesser effect of adjustment to the variance of the estimator.
.,.

p.

• 
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Definition and notation are given in section 2. Section 3 presents .

the systematic method of determining u.e. and n.u.e. factorial effects.

Section 4 discusses the relative efficiency with an illustrative

example. Section 5 presents some miscellaneous results. ,

2. Definition and Notation

Consider a single replicate 2 x 3 factorial experiment in in-

complete blocks. There are m, m = ml + m 2, factors in the experiment.

The runs are denoted by (xl,...,xm11 Xm +i ... ,Xm), where xi = 0,1, for
I I

i = mi1 + 1,...,m I and xi = 0,1,2, for i = ml+l,...,m. The runs and their S

effects are denoted by the same notation. The factorial effects are de- Pl

noted by F l c . . .FmI m+1 ...F a where a, = 0,1 for i = 1,...,m and

C = 0,1,2 for i -mI + l,...,m. The observation on the run (Xl,...Xm)

is denoted by y(xl,...,xm). The fixed effect model assumed is

E(ylxl,..x m))  -(xl, .,xm)  + I

V(y(xl,...,x m) = Y2 ,

cov(y(xl,...,Xm), y((,..., x')) = 0, (1)

where 6 is the fixed effect of the jth block containing the run

(xl,...,X ), 02 and Bj (j = 0,1,2) are unknown constants. Recall that

the effect of the run (X1 ,...,x) is denoted by the same notation

(Xl,...,x ). The notation faix1 +...+1 x =U represents the sum of1 m m I m 1  "

all 2 points (Xl,...,Xm which are solutions of axl+. ..+a x = u 1
m1 1

over the Galois Field GF(2), u I = 0,1. Again the notation % _Z

in -1e
U2 r 2- points{at+ixm +1+...+in x = 2 represents the ,, o all 3 points

I mm
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(xml+l,...,XM) which are solutions of a+ +.+a x over the

1,.~X r m +l'm 1+1+.+ X = u2oe he-

Galois Field GF(3), u2 = 0,1. The Kronecker product of

{alX l+ . . .+ am Ix1 = U1} and {a mI+IXm+ +...+amxm = u 21 is denoted by

fa ax+...+a l~1= u1 1}( {aml +...+a =U

{x mlm+. = mlXm + m m 21 and it represents

the sum of all 21 32 run effects (Xl,...,x x + '...Xm) where

(xl,...,Xm ) is a solution of ax+...+axmlxmI = u , over GF(2) and

(xm1 +l,..,xm) is a solution of amI+ixmI+1+...+amXm = u2 over GF(3).

Example 1. Consider a 2 x 3 factorial experiment. We have ml = 2,

m 2 = 2 and m = mI + m 2 = 4. The notation {x1 + x2 = 01 represents the

sum (0,0) + (I,i). The notation {x3 + 2x4 = 11 represents the sum

(i,0) + (0,2) + (2,1). The Kronecker product {x1 + x2 = 0} 

Ix3 + 2x4 = 11 represents the sum of run effects, (0,0,I,0) + (0,0,0,2) +

(0,0,2,1) + (I,I,I,0) + (1,1,0,2) + (1,1,2,1). 
k

The factorial effects of a 2 x 3 m 2 factorial experiment are

defined in terms of run effects by

a am aml+1 a
F ...F M F m+1 ...F m

F1 1

Lcojalx I+. . +a mIX M1 = Of + c 1 {a~x,+...+aL X 1 ill
[d0{a 1 +IXm +1 +...+a x = 01 + dlm +IXm ++...+a x 

1 lm1 1m l m +1 m

+ d2 fa x +...+a x =2 (2)ml+l mlt m m '.

where the coefficients co, c1, do, d1 and d2 are given in Table 1.

St
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06.

Table I q ,

The coefficients co, c1, do, dl and d2 in the equation (2)

c 0  c I  d o0 d I  d 2

i l . ,ml (a 1 +1, l ...,a m

0 = -1 1 1 1 1

0 0

(i) the first nonzero element in - 0 1

(am +l,...,am) is 1.
1.m

(ii) the first nonzero element in 1 1 -2 1 ]

(am+, , a is 2.

*0 *0

(i) thp first nonzero element in -1 1 -1 0 1

(am +1** a.. I) is 1.

(ii) the first nonzero element in -1 1 1 -2 1

(am +,,...,am) is 2.

2Example 2. In Example 1 the factorial effect F2F is defined by 0[
F2 = [-tx2 = O1 + I I}] 0 [{x 3 = O}-2 2x3  + x 2

= [-(o,o) - (io) + (o,i) + (,i)]

[(0,0) + (0,I) + (0,2) -2 (I,0) -2 (I,I) -2 (1,2)

+(2,0) + (2,1) + (2,2)] S

= - (0,0,0,0) -...+2 (0,0,1,0) +...- (0,0,2,0) -... + (1,1,2,2,).

-%]

.4

r : . ,':_.; a F,,.9:., :,:,. ...,,..:,, " • " • . .".. . ."." .,". " . ".' "-" ' " . . " " """ " . . "
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m1  m2
A 2 x 3 deletion design D in three incomplete blocks is de-

scribed below. The deletion design D is used throughout the discussion.

Consider a 31m factorial experiment in 3 blocks by confounding the two

degrees of freedom in F F2...F and F2F2...F2. The block u consists of

runs which are solutions of the equation xl+...+x m = u, u = 0,1,2. From %

every block, the runs with the level 2 for the first m1 factors are

m I  3m2- I

deleted. The resulting design is D with 2 x 3 runs in every

block. It is assumed that m 2 > 1. The design D for m2 = 0 is discussed

in Section 5.

Example 3. The runs in the three blocks of a 22 x 32 deletion design D

are given below.

0 0 0 1 1 1I1

0 0 0 I 1 1 0 0 0 1 1 1
Block 0 0 0 0 0 0 0 I I I

B o k 0 0 1 2 2 0 1 2 0 1 1 0 2

0 2 1 0 2 1 0 2 1 0 1

0 0 0 1 1 1 0 0 0 1 1 1
Block 1 0 0 0 0 0 0 1 1 1 1 1 11 0 2 0 1 2 0 1 2 2 0 1

0 1 2 0 2 1 0 2 1 0 2 1

0 0 0 1 1 1 0 0 0 1 1 1
Block 2 0 0 0 0 0 0 1 1 1 1 1 1

2 0 1 1 0 2 1 0 2 0 1 2
0 2 1 0 1 2 0 1 2 0 2 1

It is to be noted that in every block there are 12 runs and the columns

represent the runs.

U
./J
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The least squares estimators of u.e. factorial effects

a am. al+l a a aI  m 1  m+1 a
Fl ... Fm 1F I ...F is F ...F Fm ...F which is obtained by re-

1 m1+ 1 M1+

placing the run effect NJ, ... ,Xm) with the observation y(xl,...,Xm) in

(2). For n.u.e. factorial effects, the same method yields biased (non-

adjusted) estimators. "

Let Bu(u = 0,1,2) be the sum of all run effects in the uth block.

Let X = - B1 + B2 and Y = 2B - B1 - B2. Clearly X and Y are confounded

with the blocks in D. Let B u(alxI+...+ K = i), i = 0, 1, u - 0,1,2,
u i ma,

denote the sum of all run effects satisfying alxl+...+am xl i in the
XI1 m

uth block. Notice that Bu Bu (a x +...+am1XMI 0) +

Bu(a xl+...+ax = i).
m1

Example 4. Consider the block 0 in Example 3. Observe that

Bo(X 1 + x 2 = O) = (O,0,O,0 ) + (0,0,1,2) + (0,0,2,1)

+ (1,1,0,I) + (1,1,I,O) + (1,1,2,2),

B (x, + ' 2 = 1) + (1,0,2,0) + (1,0,0,2) + (1,0,1,1)

+(0,1,2,0) +-(0,1,0,2) +(0,1,1,1).

Denote

Flt ... Fmm X - [B 1)(lx I ' +- l l m  = ) lax..+ ( xxm 0)] l

a
a I -I .. +

F ...F Y 2 [8 x+...+a x =) - .+a x 0

mI m I m11 m1 m1 I=
-[B { l+...+a x,,l 1) B , +...+ tX 0)],

I2( +. m Xm 1) - 2(11 m in = O)]. (

1 11

--[B(a x1+...+a X = 1) -B (a x +...+a X 0 )]. (3)
2n 1 1 m 1 2 1 1 m1 m1
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3. Properties.

In this section the u.e. and n.u.e. factorial effects under D are

given. It is assume that m2 > 1.

a a m am

Theorem 1. The factorial effects F 1...F 1.. ...F m for1 m I m +l m

(am +i,...,a) a a (i,...,1), a = 1,2 and (a,, ..... ,o), are

u.e. under D.

Proof. When am1+1v ... am) i,...,l) and (al,...,a) * (o,...,o), it

mI m 2-1
can be seen that 2 3 runs in a block can be divided into six sets

of 2m1-1 m2 -2 runs satisfying aI x+...+a X = u I and

am +lxm ++...+a mXm = U2 , ul = 0,1 and u 2 = 0,1,2. It now follows from

11 1

(1) and (2) that in E(F 1 ...F F 1 +1 ...F am), the block effects cancel
'1 m rn1+1 m

a m 1 cmI  I~ m .

and it becomes equal to F 1 ...FmI F m+1'.'Fm " This completes the proof.

2
Example 5. In Example 3, the factorial effects F1 , F2 , F1 F2 , F3 , F3 , F4 ,

F F2  2  F2 F F4F F F2 F F F2  FF F F FF F F F FFF4' F 3 4' 1 3' 1 3 1 4' 1 4' ' FF1 3 4' 2 3' 2 3'F 2F 4'

F2  F 2 2 2 2 2 F2

F2 F4 , F2F3 F 4, F 2F 3F4 1 F1IF 2F 3, F 1F 2F 3  F 1F 2F 4, FIF 2F4 , F 1F 2F 3F4 , F 1F 2 F F

are u.e. under D by Theorem 1. .-J.

Theorem 2. The factorial effects F ..Fm  F ...F and
I m1+2

aa1  m i 1 2  2
F ... F F ...F are n.u.e. under D (i.e., they are confounded with

I i t m+1 m

blocks in D).

Proof. Consider the uth (u = 0,1,2) block in D. Out of 2 3 runs in
in1 -!3n 2 - 1  

p

the uth block, 2 3 runs satisfy X +...+x = 0 over GF(2) andm v

1>
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E-1 ED2
x1 +1..+x E= u over GF(3). The remaining 2 3 runs satisfy

X+o..+xml =I over GF(2) and 1+1+...+x m = u - 1 over GF(3). Out of

2ml-13mn2 - 1  2m 1 -23m 2 -1

2 3 runs satisfying x 1 +...+Xm = i, i = 0,1, 2 3 runs

satisfy alxl+...+amI Xm, = j, j = 0,1, and (a,,...,am 1 (I,...,I),

(0,...,0). It is now clear from the definition (2) of
a am+al mlF  1

F aF .F m 1F ED1m + 1...F a with a +,=...=a = a, a = 1,2, that in
1 EDI1 +1 ED ED ED

-a -- a
a1  ED 1D1+1 a

E( .. ED F + ...FE ED) the block effects do not cancel. This

completes the proof.

Example 6. In Example 3, the factorial effects F 3 F 4 , 34 F 1 F 3 F 4

22 22 22 

F2F3F4 , FIF2F3F 4 , FIF3 F4  F2F3F 4 and FI F2F3F 4 are not u.e. in addition to

the general mean w.
a aa D m1

Theorem 3. Under D, F1 ...F X and F1 ...F Y with (al,...,al

(0,...,0), defined in (3) are u.e.
m1 3m 2 -1

Proof. In the uth (u = 0,1,2) block of D, 2 3 runs can be divided

ED -1 ED-
into 2 sets of 2 3 runs each satisfying a x +...+a x = i, i =

aal mlx  a m

It now follows from (1) that in E(F 1 ...F EI) and E(F .F I y
1,1 1 1  1 " I

the block effects cancel. The rest is clear. This completes the proof.

Observe that P, X, Y are confounded with blocks in D. The
a a

a1  ED ED a
(211( )-l) factorial effects F ". . F I+ ...F ED with

1 MED+1 E
m~~ 1m_ %1 Flm~

(a 1+1,...,am) * a(1, ... I), a = 1,2 and (a ,...,a ) * (0,...,0), are %

%

~~~~~~~~~ %.0r,--~' . ~ Yi .%'
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u.e. under D. The (2 -)2 linear functions of factorial effects
a a

a1  .F a 1 •ith a" m a
F 1 1 ... ,F and F 1 F Y with * (o..,o), are u.e. under

D. The above [3 + (2m (3M2-2)-l) + (2m1-1)2] 32m13m 2 linear functions

of factorial effects are othogonal to each other.

4. Relative Efficiency

In this section the relative efficiences of n.u.e, factorial effects

are calculated. First note that

a(a1  M1 a m 1  a a
E( ..F F + ..F) = Fa ...F F +1..F + (do4 0+ +d2a (4)EmF 1 .i 1  m m1m m 1 i1 m 10 m

where do, d1 and d2 depends on the values of ai, i = 1,...,m 1 and

a, a = 1,2. The estimator F1 .. F F+1 ...F is called the unadjustedm I m 1+ m

a Ia a'

estimator of F1  ..F F ...F and it is denoted by

a a
(F. F 1Fa *..Fo)ua It can be checked that1 " 1 I m+' munadj*

M +1 m2-1el m~ 'Fa)und 0Io22 for a = 1,

Var(F I .. F F+1 . na (5)
mi i 1 i 1  m2
1 1 I2 3 for a = 2.

It can be seen that out of 2 points (Xl,...,Xmi ) satisfying

xl+...+x m = 0 over GF(2), nou points satisfy xl+...+xml = u, u = 0,1,2,

over GF(3). Again, out of 2 points (x ,...,x m satisfying

x +...+X I over GF(2), nlu points satisfy x1 +...+xm = u, u = 0,1,2,

over GF(3). Clearly, n00 + n + n02 = 10 +n 1 1 + n =2 It can

be check that

0I
' ,' '. ' - 4 , -e #' ".,. .,r-""-, "'- " .- .. ', ' '- . 'w ''''. '.'- W'. ' ' '• .-W .. .#
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n0 , n '"0 = 1 1)~i00 w>0 3 w>0 w

w even integer w odd integer

02= w>O (3w22 1  w>O (3w

w even integer w odd integer

11 - (3w+4]* ~ 12 = (3w+2)(6
w>O w>O

w even integer w odd integer

Under the assumption that the factorial effects F ... F Fa 1 . FCL
1 mn n~1* ms

a - 1,2, are negligible, it follows that

E(F 1 ... .F mF m+1 ..munadj = 3 n, 12 '00' 02 )'
1 1 .F ~ 1

+ (n 1 2-n 1 1-n 0 2 +n0 1 )R1 + ( 1- 0- 1+ 0'1

m 21
E(F ... F Fm +1 ... F 

2) 3 2 (l-n+ n )l-mmmuadj 10 11'12 00 0 0262

+ (n 12-2n 10+n 1 1 -n 0 2+2n 0-nl)1 + (n1 1-2n 1 2 'n1 0 -n0 1+2n 0 2 n 00 J (7)

For (ai.a 1 * i...'a), the adjusted estimators of factorial

a

effects F I... F IF a ... F Otare
1 in 1 in1+1 m

a a)aM 1  a a)(FI .. F F ... Fa = (F 1 ...F F .. FF1... +1 m adj 1 mn in1+1 inunadj

+(F 1...F mIF m 1... F ). + w2(FI...F F 1 . uaj 8

where w 1 and w 2 are constants depending on a and (ai,...,a~ ) NoticeI

that under the assumption that F1 . F F a +1.F aarnelgbthi m I1 i 1  m ar nelgbemh

a

factorial effects F a..F 1 a a * I,
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a M
1,2, are u.e. and the adjusted estimators of F1 ... F mF ... Fa,m1 1l~

(a,., ) * (I,...,I, 1,2, are in fact unbiased estimators. The

unbiased estimators of factorial effects (except the general mean) are

orthogonal to each other and hence the deletion design is orthogonal
Fa .a -,,arnelgb .

under the assumption that F ...F Fma+ ... F, a - 1,2, are negligible.
1 m1 I

The effect of adjustment is now evaluated in terms of the variance of the
S

estimators. It cn be seen from (8) that for (ai,...,a ) ,

m2 ml + 1 m2 -1
aF. L m .aF2" o2132 (1 + w2 + 3w2) for a - 1,

+3.F 1 a d 2 2(9)
1 m11 +1 maJ a 2m'+13m 2-1 (3 + w12 + 3w 2 ) for a - 2.(9

The relative efficiency in the estimation of F ...F ma+..F a
1 m ml

is

V(FII'' : F 'F unadj i+w w
m m m + w 2 o 2- I

RE=

a )aj 2  2 for a= 2. (10)
V( I..F m F m+...F adj. 3 + wI + 3w 2

Notice that 0 < RE < 1. For u.e. factorial effects RE = 1 and for

n.u.e. factorial effects RE < 1. Further the value of E away from 1 the

more is the effect of the adjustment to the variance of the estimator.

Example 7. In Example 3, mI equals to 2 and moreover, no0 = (2) - 1,

n01 =0, n 0 2 = 1 1, n1O = 0, n i ) = 2 and n12 = 0. Under theOl~~~ ~ 02 22 1 11

assumption that F 2 4 and FIF 2 F3 F4 are negligible, it follows from (7)

that

b
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E(FIF 2 F3 F4 )unadj - 9 ( 8  0) ,

E(F I 2 F 
2F 2) nadj m 9(- 282 + 8i+ 0o).

It can be seen that

E(F I 3 F 4 )unadj - FjF 3 F 4 + 3(- 282 + ai + 00 ) .

Thus

(F1F2F4 )adj (F 4 )unadj - 3 2  )unadJ"

Therefore, from (8), a = 1, w2 - _ and w I - 0. Hence from (10),

RE- 3__ ______-_ 75.

1+3(1)2 4
3

Table 2 presents the values of wl, w 2 and the relative efficiencies

for factorial effects. It is to be noted that the relative efficiences

for all 6 factorial effects are more than .75 and therefore the adjust-

ments do not have large effects on the variances of the estimators. The

deletion design with such high relative efficiencies can be considered as

a near orthogonal design.

fe

, %
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Table 2

Efficiencies for 2 2x 3 2deletion designs

Factorial
Effects a w 2RE

F F 1 0 .90

F 2F 22 0 1.90
3 43

F FF 1 0 1.75
1 3 4 3

234 1 0 1.75

F F 2F 2  2 1 0 .75
1 3 4

F F2F2 210.7
2 3 4210.7
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5. Miscellaneous Results

In this section the case m 2 . 0 i.e., ml . m is considered for the

sake of completeness. The u.e. and n.u.e. factorial effects for a 2m

deletion design are displayed. It is a feeling that the deletion design

for the case m2 = 0 is of lesser practical importance than the deletion

designs for the case m2 > 0.

Theorem 4. Under a 2m deletion design D, the factorial effects

a a
F ...F m for all al,...,a are not u.e.mm

Proof. First observe that three blocks in D can not be of equal sizes

and therefore the block sizes can not all be even. The rest is clear
a I  a

from the definition of ...F m. This completes the proof.

mm
Denote the number of nonzero elements in a vector (a1 ,...,a) by_ ,

W(aa,...,a). For w 0,1,...,m, denote

a1  a
A= IF ..F m; W(al"...,a) = w1. (11)

Notice that A0 consists of the general mean, A I consists of all main

effects, A2 consists of all two factor interactions and so on.

Theorem 5. For a w (* 0,m) all contrasts of the elements in Aw are u.e.

Proof. Consider two vectors (a ....,a )and so that

W(al,..., = W(a*,...,a*) = w (* 0). It can now be seen that in

every block, the number of runs satisfying a I x +...+a x = u is exactly N
identical to the number of runs satisfying c*x +...+a*x = u for u = 0,1. 4N

The rest is clear from the definition of factorial effects and the model

L.0
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Example 8. The three blocks in a 24 deletion design are given below.

0 1 1 1 0

Block 0 0 1 1 0 1
0 0 0 1 1
0 0 1 1

1 0 0 0 1
Block 0 1 0 0 1

0 0 B 0 1

0 0 0 1 1

1 1 1 0 0 0
Block 2 1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

Notice that the Blocks 0 and I are of the same size 5 and the Block 2 is

of the size 6. For the set A1 = JF 1 ,F 2 , F 3 ,F 3 ,F 4 ,F 42, it follows from

Theorems 4 and 5 that all the elements in A1 are n*u.e. but every

contrast of elements in A is u.e.

Theorem 6.

(a) For a w, FI ...F m is n.u.e. under D.
A wm

w

(b) The linear function of factorial effects c0 B0 + cIB 1 + c2B2 with

c + c1 + c2 = 0 is n.u.e. under D.

(c) For a w(* 0,m),
al a

E F ... F m + (c0B 0 + c 1 Bl + c 2 B2 )

w
with co + c, + c2 = 0, is u.e. under D.

Proof. The part (a) can be seen from Theorems 4 and 5. The part (b) is

obvious. The part (c) follows from the block structures in D. This

completes the proof.

%
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